Skip to main content
PROFINEWS 75
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

The special capabilities needed by PROFINET to make it fully acceptable to the process industries are being specified now by PI Working Groups and nearing review. They should be released early in 2011. PROFINET supplements PROFIBUS in hazardous environments by providing a high-speed, high-bandwidth backbone for PROFIBUS PA (and other networks) while providing immediate connectivity for drives and discrete IO. The specialist process automation requirements being addressed are: Proxies, 'Configuration in Run' (CiR), Time Sync / Time Stamping and Scalable Redundancy. PI North America member GE is participating in the Working Groups to help develop these capabilities.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

Planning GuidelinePI has published a 'PROFIBUS Guideline for Planning'. It's the third of a three volume 'Installation Guide'. The first two volumes - 'Cabling and Assembly Guideline' and 'Commissioning Guideline' - have been available for sometime. The volumes cover PROFIBUS DP and PROFIBUS PA. In addition to providing support for the plant topology definition, the guideline covers the selection of cable types and plug connectors, the planning of copper and optical transmission lines, tips for estimating bus cycle times and information regarding shielding and grounding. There's also a template for planning and documenting plants. A pdf is available here for free download.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

A new White Paper from HMS gives a quick overview of PROFINET and points out what needs to be taken into account for a successful migration from PROFIBUS to PROFINET. It shows the main differences between the two and points out their common ground. It also gives a basic overview of the key functions and features of PROFINET without getting lost in bits and bytes. The White Paper is available in English here.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

The company uses the advantages of the IO-Link interface to economically connect both IO-Link-capable sensors and actuators as well as standard sensors on a valve installation system to the machine controller. Sensor specialist and connectivity provider Balluff from Neuhausen a. d. Fildern supplies the IO-Link components.

"With IO-Link, the laborious parallel wiring of machines and systems is no longer necessary, which saves an enormous amount of time," said said Christian Wüst, Managing Director of SMR Sondermaschinen

. "With IO-Link, we have more time to test the machine and to prepare for final inspection. This provides us with precisely the buffer we need as a special machine manufacturer."

At the core of the installation are Balluff IO-Link masters which make the IO-Link-capable devices available to the control level via PROFIBUS. Each has four IO-Link ports and conventional three-wire standard cable is used.

Even with standard sensors, IO-Link dramatically reduces the amount of time needed for installation. Sensor hubs collect the signals of the switching sensors and bundle eight to 16 inputs on an IO-Link port so that they are available to the machine controller via IO-Link and the master.

IO-Link valve block plugs of type BNI IOL-75x used by SMR connect the eight double valves of the installed valve blocks to the nearest IO-Link master port with a three-wire sensor cable. Serial communication to the parallel outputs is handled by the intelligence integrated in the plug. Instead of using a cable containing many wires for parallel wiring, a simple connection that can be attached by the installer is used.

Since each module has its own sensor hub and master they are all completely independent. "This gives us enormous advantages," explained Wüst. "To prepare the individual modules for transport, all we have to do is undo a few plug connections. Thanks to IO-Link, we don't have to detach cables or make plug connectors. A mechanic can now do this work alone on-site." BALLUFF

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

The new Commissioning Guideline for PROFINET is available for members and non-members from the PI Website, together with checklists in Word format for individual adaptation. This guideline, and the existing guideline 'Cabling and Assembly', form part of the 'Installation Guidelines for PROFINET', which are intended to assist the correct installation and commissioning of PROFINET networks. Background knowledge about PROFINET mounting and cabling is not required although a basic technical knowledge of electrical installation is assumed. Download here.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

PI Conference

PI kindly invites you to the 2011 PI Conference being held on February 15-16, 2011 in Karlsruhe, Germany, when the theme will be "Automation & Energy Efficiency." The Conference will be in German and the main topics will be the latest trends and developments in automation as well as energy efficiency. The Call for Papers invites all interested persons within PI to submit abstracts (English abstracts and PowerPoints will be accepted). The head of the Conference Program Committee is Professor Dr. Frithjof Klasen (right) from the Institute for Automation & Industrial IT (AIT) at the Cologne University of Applied Sciences, which is a PROFINET

PICC. More details from www.pi-conference.com

 

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

The Swedish PROFIBUS/PROFINET Group is now preparing for the Scanautomatic Fair in Gothenburg 26-28 October. With help from PI Chairman Joerg Freitag the aim is to show Scandinavian industry how PROFIenergy can save money and the environment! With seminars and a product display in a large booth the Group expects visitors to attend from Norway and Denmark too, thanks to the short distance between Gothenburg, Oslo and Copenhagen. SWEDEN

ERROR: Content Element type "templavoila_pi1" has no rendering definition!

The Danish PROFIBUS Organization hosted a Scandanavian Workshop presented by Manfred Popp of ComDec, a PICC in Germany. More than 40 participants attended. Electronic manufacturers were particularly interested in how they could integrate PROFINET solutions. 10 representatives attended from each of Sweden and Norway, with more than 20 coming from Denmark and Germany. HMS, AB, KW-Software and Softing supported the event. DENMARK

ASSOCIAÇÃO PROFIBUS Brazil organized four workshops about PROFINET recently - in São Paulo city, the São Carlos PROFIBUS Competence Center and two in the south of the country. The events were directed at professionals in engineering, research and development of national companies. Further lectures were held on PROFIBUS at the IBP Brazilian Petroleum Institute in July, also at the ISA EXPO Campinas and the Brazilian Fair and Seminar of Mechanical Engineering and Industrial Automation. BRAZIL

Comsoft Diagnostic PlugThis mini-sized diagnostic tool is for permanently monitoring PROFIBUS networks. It takes the form of a PROFIBUS plug and is directly energized by the bus. Data traffic is continuously monitored for typical communication errors as well as device-specific diagnostic messages. Errors are indicated by status LEDs and can be reported via an alarm contact to control systems. COMSOFT

Balluff RFID systems based on IO-LinkBalluff BIS M series RFID systems now feature an IO-Link interface. Up to four read/write heads can be integrated into the control level "plug and play" using an IO-Link Master, with no additional managing unit. With a large variety of rugged data carrier types and read/write heads systems operate without contact and are wear-free. They are ideal wherever low data amounts are needed for traceability. Specially designed for harsh environments, the systems provide virtually unlimited read/write cycles for flexible, fast communication even over long distances. BALLUFF

Softing Evaluation Kit for PROFINETSofting has a new evaluation kit for integrating PROFINET into devices. The hardware consists of a base board and an Altera Cyclone III FPGA module which provides huge flexibility. Various peripheral interfaces are available to test different integration possibilities. Today, the product supports PROFINET IO Device Conformance Class A and B. Support of Conformance Class C will be available next year. A PLC program for communicating with the Evaluation Kit, example programs and documentation are included. The protocol software is portable and can be used in other environments. SOFTING

E+H UV SensorEndress+Hauser has a new UV sensor and Memograph transmitter with built-in PROFIBUS connectivity for the in-line measurement of UV absorption. A built-in reference channel and an optimized measuring filter permit extremely precise, linear and reproducible measurement. The Easycal sensor system and the precision optical path length adjustment tool allow liquid-free in-line calibration. Available are FM and ATEX approved lamp housings for hazardous area applications. ENDRESS + HAUSER.

Phoenix Contact Bus CouplerThis new I/O bus coupler for PROFINET serves as a link between the I/O level and Ethernet. It is designed to connect up to 62 or 16 functional units to the network via an SCRJ plug connector. The Ethernet and I/O-specific LEDs ensure quick commissioning and easy diagnostics.  PHOENIX CONTACT.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!

Balluu Position Sensor InterfaceBalluff's PROFIBUS/Micropulse interface block enables up to four Micropulse linear position transducers to be connected on a single PROFIBUS node. The interface block also has four extra inputs for discrete or analog sensors. Up to 15 position magnets can be used on on each transducer with detailed diagnostic feedback over PROFIBUS. The interface combines discrete, analog, and linear positioning devices into one PROFIBUS node. BALLUFF.

Micro Motion meters get PROFIBUS DPEmerson Process Management's Micro Motion F-Series compact Coriolis meters are now available with PROFIBUS DP and Smart Meter Verification, an easy-to-use configuration tool that delivers assurance of the structural and measurement integrity of the meter. These new capabilities are enabled by connectivity to the enhanced core processor and 2400S transmitter, both powered by Micro Motion next-generation MVDT (multi-variable digital) processing technology, which enables superior stability and meter performance. EMERSON PROCESS MANAGEMENT.

On 12. March 2010 the first ever PROFIBUS Product Developer Workshop took place in Shenzen, in the south of China. The event was organized by profichip China one day after the SPS Industrial Automation Fair in Guangzhou. In the one day sessions over 30 engineers were trained how to start developing a PROFIBUS product. Main topics were: the software and hardware structure of an integrated PROFIBUS interface, the differences between DP-V0, DP-V1 and DP-V2 protocols, PROFIBUS ASIC's from profichip GmbH, the RS485 physical interface design, and PROFIBUS tools. PROFICHIP

profichip GmbH from Germany has received an award for its proficonn chip – the smallest PROFIBUS DP Interface module worldwide. The award was the Innovation Prize 2010 in the hardware category of the prestigious ‘Initiative Mittelstand’ awards presented at the recent CEBIT fair.

proficonn interface modules enable easy and immediate hardware integration of a PROFIBUS DP slave interface. The module contains the PROFIBUS protocol and the complete RS485 interface including DC/DC transducer, dc decoupling and RS485 driver. 

PROFICHIP

 

The online Product Guide of PROFIBUS and PROFINET products has been revised to improve usability. By reducing the selection criteria, products can be found much more easily. For vendors product data can also be entered faster. In addition the presentation of certified products has been improved, to facilitate identification. The Product Guide is a free and well-proven benefit for members and users. The Guide is kept fully up to date by vendor members themselves.

PRODUCT GUIDE

ERROR: Content Element type "templavoila_pi1" has no rendering definition!

A completely new marketing brochure for PROFIenergy has been published, along with four other updated brochures covering PROFINET, PROFIBUS PA, PROFIdrive and PROFIsafe. All comply with the latest corporate design of PI and are available for download in pdf format

FROM HERE

ERROR: Content Element type "templavoila_pi1" has no rendering definition!

Attempts to establish Regional PI Association (RPA) in the key Middle East area have not so far proved fruitful ... but that’s all about to change! Paula Doyle from Ireland has recently taken up a new job in Dubai with Siemens and part of her mission is to set up an official RPA (Regional PI Association) as soon as possible. Paula is from Limerick in Ireland, where she gained her PhD. For the past four years she’s been in Scandinavia developing new control products for ABB. Her position with Siemens in Dubai is firmly centred on PROFIBUS and will allow her to focus her marketing skills on helping PI expand in the Middle East, a key area that deserves more support from the PI community. Her presence at the 23rd PI Meeting in Rome (see full report left) gave her the chance to meet current RPA Chairmen and to find out 'how they did it'. We’ll keep you informed of Paula’s progress.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

Among the many presentations given on the PI booth was one about FDI technology. PI is actively working as part of the FDI Cooperation to help develop FDI, which will lead to a big reduction in the costs of maintaining plant assets. It enables both FDT- and EDDL-based host systems to manage field devices using a single engineering package, so it will make different engineering solutions for different devices obsolete

. It also provides a scalable alternative in applications ranging from simple configuration to the complex management of sophisticated field devices.

 

 

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!


PROFINEWS is published by PI, a global community supporting technological excellence in industrial automation. It represents PROFIBUS, PROFINET and IO-Link and actively collaborates with other leading automation groups such as ECT, HART, FDI, FF, OPC and WCT.

www.profibus.com or www.profinet.com


IO-Link Technology Days are being organized by MSC Gleichmann Schweiz, HMT microelectronic and MESCO Engineering in September and December. An overview of the IO-Link Consortium will be presented along with hardware and software elements of IO-Link and the testing requirements for conformity.  Component manufacturers will present products for developing IO-Link devices.

Emerson's Cahil on Social MediaAfter the enforced virtual (on-line) meeting of 2009, more than 60 delegates from PI member companies gathered in Scottsdale in August, for two days of technology discussions and networking. Day 1 focused on PI and PROFINET, with the announcement that PTO's name is to be changed to PI North America being top of the agenda, along with the launch of the 'All Things PROFINET' web site (see stories above).

Pride of place on Day 1 went to Emerson's Jim Cahill (right) who explained how his company was taking advantage of social media like Twitter, Facebook and LinkedIn to stimulate new business and enhance existing customer relationships.

But it was Day 2 that really impressed, with two presentations shedding light on aspects of PROFINET adoption. The first, by Jim Remski of Siemens and entitled 'Transitioning to PROFINET' covered what automotive companies look for when purchasing automation systems, how they decide what to purchase, what procedures are involved and how they interface with their suppliers.

GE's Connie Chick talking about PROFINETConnie Chick then unveiled more details of GE Intelligent Platform's support for PROFINET. GE has been working to integrate PROFINET across its products, systems and solutions and Chick explained the first reason that GE chose PROFINET is because it's an open protocol developed by global players, which means global presence is backed up by local knowledge. Better access to real time plant floor data is also enabled with PROFINET, she said, "taking the worry out of volume, latency and frequency." Reasons 3 and 4 are that easy installation allows deeper focus on customer needs, and the fact that PI is a forum for customer and vendor collaborations keeps ideas fresh and allows continuous improvement. PROFINET is being integrated into GE's PACSystems architecture now, and will be used with Proficy software and GE's hot standby redundancy systems.

Chick used three applications area to illustrate where PROFINET will deliver value for GE's customers. In Water Treatment, PROFINET is expected to bring up to 15% cost savings while adding diagnostics and improved MTTR; in Energy she sees easy upgradability and operational enhancement as the keys; in Oil and Gas Distribution, it is the ease of connection, improved installation and maintenance which are the prime benefits.

Additionally, pointing out that GE products are used in the production of two-thirds of all cars manufactured in North America, she said that easier installation and maintenance are what count there, plus the fact that a 5% increase in production is expected for GE's material handling systems. "We have a great solutions portfolio that is about to become even better with PROFINET!" she said. GE is rolling out pilot products with select customers now and the full suite of solutions will soon be available.

Also keenly listened to were presentations about how to implement PROFINET using ASICS and FPGAs, with Siemens, Hilscher, Innovasic and Freescale explaining their offerings. PI North America.

 

The next opportunity to get PROFIBUS trained and certified will be at MMU's Certified Training Week, September 20-24th. Following a new format designed to help candidates reach their fullest potential in just a week, the schedule covers the Certified PROFIBUS Installer course - which is pre-requisite - the Commissioning & Maintenance module and finally the Certified PROFIBUS Engineer Course. Each course can be taken individually or as part of the full set, depending on a candidate's qualifications and ability. In October, a Certified PROFINET Engineer course will be held. admin(at)uk.profibus(dot)com. UK

Japan PROFIBUS Organization seminarThe Japanese PROFIBUS Organization (JPO) held its annual "PROFIBUS & PROFINET Day" in Tokyo in June. More than 200 visitors attended, 25% more than expected! PROFIBUS DP with Safety, PROFIBUS PA with asset management and PROFINET were presented, together with nine seminars on the latest product developments and application examples. 24 JPO member companies and 2 Associations supported the event.  JAPAN

India PROFIBUS PROFINET AssociationThe Indian PROFIBUS, PROFINET Association (IPA) began a series of road shows called ‘PROFIBUS, PROFINET Day’ in June. The series was inaugurated by PI Chairman Joerg Freitag in Delhi, followed by events in Mumbai, Bangalore, Chennai and Hyderabad. Mr Vishwanath was the Guest of Honor at Hyderabad, General Manager of the Control and Automation Division of ECIL (left, being honored by Dileep Miskin, center, of IPA). At Mumbai, Mr B R Mehta of Reliance was honored. The first edition of the IPA Newsletter has just been published. INDIA

To support the rapid worldwide dissemination of its unique point-to-point connection solution for smart actuators and sensors, the IO-Link consortium has created a new infrastructure. Accordingly, IO-Link is now part of Technical Committee (TC6) within PI and is also represented on the Advisory Board.

 

Working Groups (WGs) in the areas of technology, marketing, network integration, and profiles make up the infrastructure for further technical development and efficient dissemination of IO-Link technology. A new Steering Committee (SC) has been formed, to include representatives of all IO-Link interest groups (master manufacturers, device manufacturers, system providers, service providers, and chip manufacturers).

 

Perhaps the biggest change is the elimination of the membership entrance fee of EUR 10,000. Membership in a Regional PI Association and acknowledgement of the IO-Link System of Rules now provides access to the specifications, participation in WGs, and use of the "IO-Link" logo.

IO-Link enables quick and easy expansion or simplification of PROFIBUS and PROFINET networks. An IO-Link expansion module attaches directly to the network as a node, allowing up to four intelligent sensors to be connected. This cuts costs by up to 40% claims Balluff because one expander and 4 discrete sensor hubs can replace 5 discrete PROFIBUS modules. Further, up to 76 sensors per node are possible.
BALLUFF

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

India ran a series of workshops in December for engineers from the cement and electronics industries. About 55 people attended. The event was a great success says Dileep from UL.

PI has abolished the certification fees for PROFINET products for PI member companies, now that the certification process has been fully developed. Certification nows covers the entire functionality of PROFINET, extending from IO devices with RT functionality and IRT functionality to IO controllers.

 

ERROR: Content Element type "templavoila_pi1" has no rendering definition!

 


 

 


 

ALMC supplies more than half the lubricant demand in Australia. The company’s products include engine oils, transmission fluids, gearbox oils, hydraulic oils, oil based process and cutting fluids, agricultural spray oils and grease.

In recent blending and filling plant upgrades, ALMC used Endress+Hauser’s field instrumentation integrated into a PROFIBUS DP network to significantly improve production yields and fulfill the stringent performance criteria for the Buker certification process.

14 tanks at ALMC’s Lytton and Fremantle sites were fitted with Endress+Hauser’s Levelflex FMP40 guided microwave level monitoring devices, supported by Liquiphant high and low level switches, and Omnigrad temperature sensors and transmitters.  Optimizing the level to volume measurements in the storage tanks ensured that there are always sufficient quantities of each component to meet customer requirements. This also reduces the possibility of overstocking.

Endress + Hauser ALMCIn addition, Endress+Hauser’s Promass Coriolis mass flow meters are used to manage the blending of the final product.  Prior to the installation of Promass, entrapped air in the blend was causing quality issues.  However, Promass Coriolis mass flow meters are able to measure accurately and reliably even under difficult conditions such as these.

As a result of the upgrade, production reliability increased from 93% to almost 100%, and ALMC was awarded a Class A Buker certification. ALMC is the only lubricant manufacturer in the world to achieve this certification. ENDRESS + HAUSER

Certification

PI has decided to abolish certification fees for PROFINET devices developed by member companies.

 

Another Story

This is another news brief telling you what happens in PI

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

Comtrol has added TCP/IP to PROFINET IO connectivity to the Devicemaster UP line of Industrial Ethernet gateways. The device provides connectivity to both serial and Ethernet TCP/IP raw/ASCII devices and provides detailed diagnostics. It configures in minutes. Supported PLCS include ET-400, S7-400 and S7-300, the Omron CJ Series, and Bosch Rexroth IndraControl types. COMTROL

The latest Subcon-Plus-Profibus/90° family of connectors offers the option of insulation displacement technology, allowing PROFIBUS cables to be used with solid or flexible copper conductors and reducing assembly times significantly. The high-grade shielded connector housing permits excellent interference immunity even at maximum transmission rates.
PHOENIX CONTACT

The AnyBus X-gateway is a configurable stand-alone module that allows plant-floor PROFIBUS devices to communicate with a Modbus-TCP network and vice versa. Typical applications are installations with mixed usage of Siemens and Schneider Electric, ABB or GE PLCs. The X-gateway is DIN rail mounted and functions as a server (slave) on the Modbus-TCP network and as a master on the PROFIBUS side. HMS INDUSTRIAL NETWORKS

The latest version of the PROFItrace troubleshooting & maintenance tool contains an OPC server, offering a standardized way to get data into other applications. Procentec says "the opportunities are vast!" For example, ProfiTrace tags can be displayed in a SCADA/HMI package, or linked to an SMS/email client; reports can be generated in Word/Excel.
PROCENTEC

A new set of free Windows7 drivers is available for Softing PROFIBUS PC interface boards, including PCI Express, PCI, PC/104plus and USB types. These drivers support 32 and 64 bit versions of Windows7, Vista and XP. This allows 32 bit applications to run on 32 bit and 64 bit operating systems and native 64 bit programs to be built.
SOFTING

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

Version 3.1 of ProfinetCommander, the PROFINET development and test tool that makes it easy to build a PROFINET network without PLC programming skills, now includes the option to display I/O data in hex, binary, or decimal, GSDML file parsing support for UNIX or Windows and added decoding of PROFINET port data change notification alarms. PIC

A new ERTEC200-based PNIO Starter Kit is available, offering an easy way to add PROFINET to automation devices. It includes all the hardware, software and debugging tools needed to setup a PROFINET IO device prototype, including an Evaluation Board, ERTEC200 samples, the PNIO Stack and real time examples in source code. SIEMENS

Softing Diagnostics SuiteSofting has a new unified PROFIBUS Diagnostic Suite, V2.02, which offers one-click PROFIBUS diagnostics with a clear, easy-to-understand display of network health. It can be downloaded here to update current diagnostic toolsets and is free of charge and software license. A "Quick-Test" button initiates a full analysis of the network. Critical conditions are color-coded and the user has quick access to additional information. The package supports all Softing's diagnostic products. SOFTING.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin massa nunc, egestas in pharetra semper, ullamcorper non nisi. Nulla condimentum lacus id ligula pretium blandit. Sed erat velit, ultrices id adipiscing eget, pretium vel nibh. Praesent at ante at mi posuere sodales in vitae velit. Nam nunc tortor, condimentum ac eleifend ac, scelerisque vitae massa. Maecenas vel dolor nec lectus aliquam elementum. Suspendisse potenti. Quisque tempor ligula sed augue rhoncus ut malesuada massa fringilla. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nunc luctus commodo magna in volutpat.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin massa nunc, egestas in pharetra semper, ullamcorper non nisi. Nulla condimentum lacus id ligula pretium blandit. Sed erat velit, ultrices id adipiscing eget, pretium vel nibh. Praesent at ante at mi posuere sodales in vitae velit. Nam nunc tortor, condimentum ac eleifend ac, scelerisque vitae massa. Maecenas vel dolor nec lectus aliquam elementum. Suspendisse potenti. Quisque tempor ligula sed augue rhoncus ut malesuada massa fringilla. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nunc luctus commodo magna in volutpat.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

in devices such as compact IOs.“

 

PROFIenergy takes off: Phoenix Contact has also become one of the first companies to introduce PROFIenergy devices (see product story right). The goal, said Bibelhausen, is to make the company's entire PROFINET portfolio available in PROFIenergy-compliant versions.

 

Siemens has also introduced a PROFIenergy-enabled ET200S (right). Ruttkamp said: "For I/O, there will be downloadable PROFIenergy modules, as with our PC-based solutions. PROFIenergy technology is an important part of our “green” portfolio which underlines our contribution to sustainable environmental protection and energy savings.”

As the Chinese "Year of the Tiger" was being celebrated in February, Phoenix Contact formally announced its new PROFINET chip - the TPS-1. Known as 'TIGER' it is a highly integrated single-chip ASIC for easy implementation in low end compact devices and drives. The chip supports existing PROFINET RT and IRT specifications.

 

Volker Bibelhausen, Director of the Automation Business Unit of Phoenix Contact Electronics said: "With the TIGER chip, even small and simple field devices can be connected to PROFINET cost-effectively."

 

Siemens collaborated with Phoenix Contact in the development of TIGER and Uwe Ruttkamp, Director Product and System Management SIMATIC, confirmed that: "We plan to use TPS-1

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

A new web site dedicated to PROFINET has been launched by PI North America. Called 'All Things PROFINET', the site is designed as a single entry point for prospective users and developers of PROFINET products and systems.

It answers the 'how to' questions faced by PROFINET newbies and is structured so that different types of users can find a quick route to the information they need. Signposts for End Users, OEMs and Device Developers provide a logical route into and through the site, with 'job title' choices acting as the primary guide mechanism. Everyone, from control engineers to IT managers, is catered to.

The site is a user-friendly resource that focuses on benefits and delivers easy access to solutions. Links to deeper technical topics are provided. Visit www.allthingsprofinet.com. The site is being continuously improved and feedback is welcomed.

A comprehensive offer of products and services is now available from a wide range of providers to aid with the design and development of PROFINET devices. As well as sophisticated SDKs, firmware based on Standard Ethernet interface, PROFINET ASICs, and ready-to-install modules can now be easily purchased to support fast and effective deployment of PROFINET devices. A brochure entitled “The Easy Way to PROFINET Technology" has been published and is now available for download HERE. This includes a full overview of all providers. With the release of the new TPS1 (TIGER ASIC) by Phoenix Contact, yet another PROFINET chip is now available to assist device implementers. TIGER has been designed especially for compact devices (e.g. compact IO modules or drives). 

EtherCAT and Powerlink, which focus mainly on drive technology, were estimated to have market shares of 4% and 11% respectively (see graphic).

IMS Research forecasts PROFINET to grow the most between 2008 and 2013, with +8.7% (CAGR). It predicts EtherNet/IP will grow more slowly (by +7.1%) and Modbus TCP/IP will decline (by about -0.4%). IMS RESEARCH

In a new market study called “The World Market for Industrial Ethernet – 2009 Edition”, IMS Research in UK estimates that with a market share of 28% PROFINET is amongst the top most-used Industrial Ethernets worldwide. The study particularly notes that PROFINET offers an Industrial Ethernet solution for a comprehensive range of applications, including high-speed motion control. PROFINET, EtherNet/IP and Modbus TCP/IP fill the top slots, accounting for 80% of the total market.http://www.imsresearch.com/index.php

ERROR: Content Element type "templavoila_pi1" has no rendering definition!

It gives me great pleasure to welcome you to the third issue of our new email newsletter 'PROFINEWS'. I've been Executive Director of PTO in North America for more than 16 years and for almost all that time I've been Deputy Chairman of PI as well. I have contributed enthusiastically to the international outlook of PI and have taken pleasure in watching PI grow and mature. The new corporate identity is our latest innovation. Recently, at our PI meeting in Rome, I recognized the opportunity to reconsider aspects of our North American operations, too. As a result the PTO Board in North America has decided to change its name to 'PI North America', to align itself with that globalization process and reinforce the strength of our international presence. We announced the decision at our recent General Assembly Meeting, which also saw key presentations about the progress being made by PROFINET in North America. Two presentations stood out: Siemens described how automotive companies are 'Transitioning to PROFINET' while GE explained more about their decision to place PROFINET at the heart of their solutions portfolio. I am particularly excited by the GE news because it's clear that the company has been working hard behind the scenes following its announcement to support PROFINET some time ago. You can learn more about the GAM and those key presentations below - they signal some very positive developments for PROFINET in coming years.

Michael Bryant, PI Deputy Chairman
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

Cube20 is a PROFIBUS I/O station which enables 488 I/Os to be placed on just 90 centimeters of DIN rail. It includes a diagnostic system and features a signal status and error display located directly at the connecting terminal. Modules are galvanically separated and have an integrated power-supply terminal to simplify the implementation of different potential groups. Cube20 can be operated as a stand-alone unit or in combination with Cube67. It is possible to exchange buses without changing the system. MURRELEKTRONIK

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

The new

GHS 12G/8

Gigabit Modular Switch from Phoenix Contact allows 12 Gigabit ports to be installed on a mounting rail. It is therefore especially suitable for use in a powerful automation backbone and for connecting to the higher-level IT network. It supports all commonly used Gigabit and Fast Ethernet data transfer standards, standard IT protocols as well as PROFINET.

 

The modular concept allows expansion to 28 ports. Twisted pair and fiber options are available.

The switch includes diagnostic and configuration functions Important parameters can be read and set at the device using an operator console. S

upport for the energy management of automation systems via the PROFIenergy profile is incorporated

.

 

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

The new

GHS 12G/8

Gigabit Modular Switch from Phoenix Contact allows 12 Gigabit ports to be installed on a mounting rail. It is therefore especially suitable for use in a powerful automation backbone and for connecting to the higher-level IT network. It supports all commonly used Gigabit and Fast Ethernet data transfer standards, standard IT protocols as well as PROFINET.

 

The modular concept allows expansion to 28 ports. Twisted pair and fiber options are available.

The switch includes diagnostic and configuration functions Important parameters can be read and set at the device using an operator console. S

upport for the energy management of automation systems via the PROFIenergy profile is incorporated

.

 

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

Of those 31.4 million PROFIBUS devices, 5.4 million are now used in process automation so it's clear that PROFIBUS has assumed the dominant fieldbus role. The latest PA Profile V3.02 is expected to accelerate this since it contains a set of important asset management features specifically requested by end users.

 

In the Functional Safety market, PROFIsafe continues to lead as well. The 220,000 purchased PROFIsafe devices in 2009 equals the number purchased the previous year. The installed base of PROFIsafe now exceeds 850,000 devices.

 

NB: PROFINET market statistics are collected by an independent and fully neutral third party. Only end devices are included in the count; infrastructure devices are excluded.

 

Paula to set up Dubai office

Attempts to establish Regional PI Association (RPA) in the key Middle East area have not so far proved fruitful but that’s all about to change. Paula Doyle has recently joined Siemens in Dubai and is planning to set up a formal RPA there shortly. Paula is from Limerick in Ireland, where she gained a PhD. For the past four years she’s been in Scandinavia developing new control products for ABB. Her move to Dubai means she can now focus her marketing skills on helping PI expand in the Middle East. She told PROFINEWS that legal requirements in Dubai mean that some kind of PI Competence Centre (PICC) will have to be established first. Her attendance at the 23rd PI Meeting gave her the chance to meet many of the other RPA Chairmen and to see how they did it. We’ll keep you informed of Paula’s progress.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

PI and its members were strongly represented at the recent Hannover Fair in April, with a new booth design reflecting the latest corporate design standards. Multi-vendor demonstrations, a host of new products and many educational seminars gave visitors a full insight into PI activities. Major topics included PROFINET, PROFIsafe, PROFIdrive, and of course the new PROFIenergy profile which promises to cut energy consumption dramatically.

 

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

PROFIenergy

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

PROFIenergy takes off

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!

FDI workshop

At the Hannover Fair on April 20, 2010, experts discussed the latest development of FDI technology. The primary benefit of FDI is that end users with either an FDT- or an EDDL-based host will have a single source solution for managing field devices. Users will no longer need to manage disparate device descriptions, which will reduce the costs associated with maintaining assets in the field.

The FDI project will also provide a very scalable solution that users can deploy in applications ranging from simple configuration to complex management of the most sophisticated field device. This makes different solutions for different devices obsolete. An example of this is that FDI device packages for applications such as valve diagnostics will provide the same functionality regardless of the host system.

The discussion was moderated by Dr. Thomas Tauchnitz, Sanofi Aventis. Participants were Kimikazu Takahashi (Yokogawa), Hartmut Wallraff (Invensys), Daniel Huber (ABB), Hans-Georg Kumpfmüller (Siemens) and Dr. Raimund Sommer (Endress+Hauser).

ERROR: Content Element type "templavoila_pi1" has no rendering definition!

Welcome to our new PROFINEWS newsletter

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!

PROFIenergy takes off

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

PROFIenergy starts to climb

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

6666666666666666Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

ERROR: Content Element type "templavoila_pi1" has no rendering definition!
ERROR: Content Element type "templavoila_pi1" has no rendering definition!

Our well-known PI technologies