Skip to main content

PROFINEWS 76

Do you need to know more about PROFINET and why it's the best featured, most powerful Industrial Ethernet available? Check out 'All Things PROFINET' now!

                                                           Jörg Freitag, PI Chairman

PI Nederlands new name and logoWelkom bij PI Nederland! So says the web pages of the newly-renamed PI Netherlands, which have just gone live at www.profibus.nl. Fully integrated within the PI web site, the pages feature extensive Dutch translations of PI resources at www.profibus.com such as the technology pages and product catalog. A new logo (see right) has also been introduced. Forthcoming events on the ground include a national 'PROFIBUS, PROFINET and IO-Link Day' on November 18th, featuring Technology Corners supported by leading members. There will be 20 presentations including one by Xaver Schmidt of Siemens who will provide a 'look into the future'. More information here.

In industry a large number of 4-20mA transmitters are compatible with the HART protocol and in some cases these devices are connected to the control system via a PROFIBUS networked remote I/O stations.

A remote I/O can diagnose whether the 4-20mA HART signal is within its limits - i.e. locate a wire break - however it does not in itself allow any real connectivity to the device. In the absence of a HART multiplexer, these devices are only configurable using a handheld communicator or a HART modem. Unlike PROFIBUS PA instruments that can be viewed in multidrop mode, this necessitates connecting to each device separately in order to set the desired parameters. The result is that the user must go into the field to do a job that can otherwise be undertaken from the control room.

The problem can be resolved however if the HART bypass capability of the remote I/O station such as STAHL IS1 is utilized. This is a commonly unused capability of HART devices connected to remote I/O stations. Gateways such as Endress+Hauser's Fieldgate FXA720 in combination with Fieldcare from E+H facilitate such a process and can be connected to the internet allowing communication with the HART devices over PROFIBUS network from any location in the world. For fuller details of this technique please email info(at)profibus(dot)ie

With PROFIBUS, the use of manufacturer-specific description files means that users have to replace a process field device with an identical one. The recent introduction of PROFIBUS PA Device Profile 3.02 changes all this as a new field device can now automatically assume the device version of an older device without any interruption to the process. The replacement device thus presents itself to the control system as its predecessor, even though it may be 10 years more advanced.

This brings some valuable benefits. During a subsequent planned shutdown, the new functionality can be integrated by updating the description file. The same applies to the integration of an EDD or a DTM during a device replacement. It is also possible with Device Profile 3.02 for a new device to assume the functionality of several predecessor versions.

Device Profile 3.02 has recently undergone tests at BIS Prozesstechnik in Frankfurt, where one of the world's largest multi-vendor fieldbus test installations (see right) is installed. The laboratory is also a test center for EMC and actuator technology (SIL, CE, TA-Luft), a PI Competence Center (PICC) for PROFIBUS, and a Fieldbus Foundation Center of Excellence.

In the Profile 3.02 tests, two scenarios were considered: first, the replacement of an existing device while the process was running and, second, the display of status signals according to NE 107. Two field devices – a Samson actuator and an Endress+Hauser head transmitter – were tested in combination with five different control systems from Siemens, ABB, and Schneider. Three types of segment coupler were also included in the tests.

To start, a PA device assembly was configured and commissioned for each control system. Each was then replaced with a newer version. The cyclic transfer of measured values and the status of the measured value were monitored. The tests also included the mapping of specific diagnostic information onto four standardized categories according to NAMUR Recommendation 107. Different error scenarios were simulated. All tests were successfully passed.

Profile 3.02 can also handle faster uploading of parameters for optimizing transmission times. Different quantities of data must be transferred depending on the phase in the life cycle of a field device. Thus, a portion of the parameters must be adapted during commissioning, another portion during subsequent maintenance activities, and a large portion during device replacement. Depending on the functionality of the device, it is not unusual to deal with 300 parameters. The new PA Profile 3.02 optimizes the transfer by grouping parameters. This allows the transfer times to be reduced many times over (5- to 10-fold, depending on the data quantity). These functions are not yet available in devices so further testing will be carried out later.

Take our survey and tell us what you think about PROFINETPI is undertaking a worldwide survey about PROFINET. We want to know what you think about it. Are you using it yet? How do you rate its efficiency? It will take you no more than 5 minutes to answer a few key questions on-line here, and in that time you could help us improve the relevance of PROFINET to your needs. (link to come here).

The special capabilities needed by PROFINET to make it fully acceptable to the process industries are being specified now by PI Working Groups and nearing review. They should be released early in 2011. PROFINET supplements PROFIBUS in hazardous environments by providing a high-speed, high-bandwidth backbone for PROFIBUS PA (and other networks) while providing immediate connectivity for drives and discrete IO. The specialist process automation requirements being addressed are: Proxies, 'Configuration in Run' (CiR), Time Sync / Time Stamping and Scalable Redundancy. PI North America member GE is participating in the Working Groups to help develop these capabilities.

Planning GuidelinePI has published a 'PROFIBUS Guideline for Planning'. It's the third of a three volume 'Installation Guide'. The first two volumes - 'Cabling and Assembly Guideline' and 'Commissioning Guideline' - have been available for sometime. The volumes cover PROFIBUS DP and PROFIBUS PA. In addition to providing support for the plant topology definition, the guideline covers the selection of cable types and plug connectors, the planning of copper and optical transmission lines, tips for estimating bus cycle times and information regarding shielding and grounding. There's also a template for planning and documenting plants. A pdf is available here for free download.

A new White Paper from HMS gives a quick overview of PROFINET and points out what needs to be taken into account for a successful migration from PROFIBUS to PROFINET. It shows the main differences between the two and points out their common ground. It also gives a basic overview of the key functions and features of PROFINET without getting lost in bits and bytes. The White Paper is available in English here.

As the fourth biggest passenger-car seller in China, Chery Automobile China, is enjoying great success. It is upgrading its transfer press line and increasing throughput by adopting state-of-the-art safety systems. PROFINET with integrated PROFIsafe is being used for automating the feeders between the individual press stages, based on Siemens SIMATIC safety products. PROFINET IRT is employed to enable virtual real-time communication within the system and to synchronize the feeders within one millisecond. CBE 20 communication processors with integrated ERTEC chips ensure that the SINAMICS converters respond equally quickly. PROFIsafe meets the strict European safety requirements of SIL 3 (Safety Integrity Level 3). The PROFINET bus architecture is open and can be enhanced at any time. No separate bus structures or cable systems are required for the safety-specific functions or for the drive synchronization. Thanks to the uniform bus structure of the system controller, drives and peripheral systems, Chery is able to reap considerable savings. The whole system runs on a single platform, resulting in significant cost reductions for engineering, commissioning, maintenance and ongoing production. It has helped Chery increase throughput by 15% compared with manual systems. SIEMENS

Do you want easy access to PROFIBUS and PROFINET technology, Ethernet basics, functional safety and wireless? Then try our new series of webinars, available from the PI website here. These webinars are short, on-line training courses designed to introduce you to PI technologies in an easily-assimilated way. They were recorded in English by PI North America and PROFI Interface Center personnel and they can be viewed for free!

Check out the PI Website and the PI North American Website if you would like to join a live webinar in the future!

PI Conference

The next PI Conference will be dedicated to Automation and Energy Efficiency and hosted by PNO on February 15-16, 2011 in Karlsruhe, Germany. Abstracts have been submitted to the international program committee and a final program will be published on the conference website

soon. All sessions will be in German. To register please go to

www.pi-conference.com

The Swedish PROFIBUS/PROFINET Group is now preparing for the Scanautomatic Fair in Gothenburg 26-28 October. With help from PI Chairman Joerg Freitag the aim is to show Scandinavian industry how PROFIenergy can save money and the environment! With seminars and a product display in a large booth the Group expects visitors to attend from Norway and Denmark too, thanks to the short distance between Gothenburg, Oslo and Copenhagen. SWEDEN

After a successful audit in August, INTEX has become the first PI Training Center in Poland.  The audit, covering PROFIBUS and PROFINET, was performed by Dennis van Booma from PROCENTEC. INTEX has been supporting users in Poland as a PI Competence Center since 2005 and has also provided PROFIBUS-oriented training for more than 10 years. The first certified training classes are planned for the beginning of 2011. POLAND

Two PROFINET user workshops are being held in October, together with a 'Meet the Experts' seminar. Participation is free of charge! The PROFINET User Workshops are: October 25th in Minden, hosted by Wago and October 26th in Ingolstadt, hosted by Audi. The PROFIBUS 'Meet the Experts' seminar is on October 27th in Frankfurt, Industriepark Höchst. For registration and more information please contact daniela.kerres(at)profibus(dot)com

Steinhoff QNX boards for PROFINETPROFINET CP1616 and CP1604 boards from Siemens are now available from Steinhoff running under the QNX Neutrino RTOS. The C-API and the function block library for Steinhoff's soft-PLC DACHSview are fully compatible with the PNIO-API defined by Siemens. RT and IRT modes – with a cycle time of 250us – are supported for QNX 6.3.2 up to QNX 6.5.0.  Configuration can be done using the SIMATIC NCM PC configuration tool. Complete PCs (PACs) with pre-installed CP16xx and software can also be supplied. STEINHOFF

Balluff RFID systems based on IO-LinkBalluff BIS M series RFID systems now feature an IO-Link interface. Up to four read/write heads can be integrated into the control level "plug and play" using an IO-Link Master, with no additional managing unit. With a large variety of rugged data carrier types and read/write heads systems operate without contact and are wear-free. They are ideal wherever low data amounts are needed for traceability. Specially designed for harsh environments, the systems provide virtually unlimited read/write cycles for flexible, fast communication even over long distances. BALLUFF

Softing Evaluation Kit for PROFINETSofting has a new evaluation kit for integrating PROFINET into devices. The hardware consists of a base board and an Altera Cyclone III FPGA module which provides huge flexibility. Various peripheral interfaces are available to test different integration possibilities. Today, the product supports PROFINET IO Device Conformance Class A and B. Support of Conformance Class C will be available next year. A PLC program for communicating with the Evaluation Kit, example programs and documentation are included. The protocol software is portable and can be used in other environments. SOFTING

E+H UV SensorEndress+Hauser has a new UV sensor and Memograph transmitter with built-in PROFIBUS connectivity for the in-line measurement of UV absorption. A built-in reference channel and an optimized measuring filter permit extremely precise, linear and reproducible measurement. The Easycal sensor system and the precision optical path length adjustment tool allow liquid-free in-line calibration. Available are FM and ATEX approved lamp housings for hazardous area applications. ENDRESS + HAUSER.

tREBING + hIMSTEDT Diagnosis for PROFINET and PROFINETThis software package enables PROFIBUS and PROFINET networks to be monitored with one solution. The concept is comprised of a web-based software tool and a network access point which is available for fixed installation or for mobile use.  Intuitive handling, protocol-independent diagnosis functionalities and uniform views make using the package really simple. An automatic alert allows short reaction times in case of failures. Diagnosis information is available directly or can be integrated into higher-level applications via OPC. The package will be presented at SPS/IPC/DRIVES in November. TREBING + HIMSTEDT

Overload Relays for IO-LInkThe communication-capable electronic overload relay 3RB24 for IO-Link completes the Sirius modular system for overload relays and supports the assembly of load feeders for current ratings up to 820A. The IO-Link standard allows for the read-out of current values, diagnostics and locally set parameters as well as their transmission to a higher-level controller. As part of the Sirius modular system and in combination with contactors the overload relay can also be used as direct, reversing and star-delta starter. SIEMENS

Plug-based PROFINET proxy from HilscherThis device, essentially a plug and socket housing, integrates any PROFIBUS DP Slave into a PROFINET network. It operates as a PROFINET IO-Device and maps the process data from the DP slave to a PROFINET-enabled device. The automatic generation of the GSDML-file makes integration in the controller’s configuration tool effortless. It is powered from the PROFIBUS cable and is a simple way to keep existing PROFIBUS devices operational on networks being upgraded to PROFINET. HILSCHER

On 12. March 2010 the first ever PROFIBUS Product Developer Workshop took place in Shenzen, in the south of China. The event was organized by profichip China one day after the SPS Industrial Automation Fair in Guangzhou. In the one day sessions over 30 engineers were trained how to start developing a PROFIBUS product. Main topics were: the software and hardware structure of an integrated PROFIBUS interface, the differences between DP-V0, DP-V1 and DP-V2 protocols, PROFIBUS ASIC's from profichip GmbH, the RS485 physical interface design, and PROFIBUS tools. PROFICHIP

profichip GmbH from Germany has received an award for its proficonn chip – the smallest PROFIBUS DP Interface module worldwide. The award was the Innovation Prize 2010 in the hardware category of the prestigious ‘Initiative Mittelstand’ awards presented at the recent CEBIT fair.

proficonn interface modules enable easy and immediate hardware integration of a PROFIBUS DP slave interface. The module contains the PROFIBUS protocol and the complete RS485 interface including DC/DC transducer, dc decoupling and RS485 driver. 

PROFICHIP

 

The online Product Guide of PROFIBUS and PROFINET products has been revised to improve usability. By reducing the selection criteria, products can be found much more easily. For vendors product data can also be entered faster. In addition the presentation of certified products has been improved, to facilitate identification. The Product Guide is a free and well-proven benefit for members and users. The Guide is kept fully up to date by vendor members themselves.

PRODUCT GUIDE

A completely new marketing brochure for PROFIenergy has been published, along with four other updated brochures covering PROFINET, PROFIBUS PA, PROFIdrive and PROFIsafe. All comply with the latest corporate design of PI and are available for download in pdf format

FROM HERE

Attempts to establish Regional PI Association (RPA) in the key Middle East area have not so far proved fruitful ... but that’s all about to change! Paula Doyle from Ireland has recently taken up a new job in Dubai with Siemens and part of her mission is to set up an official RPA (Regional PI Association) as soon as possible. Paula is from Limerick in Ireland, where she gained her PhD. For the past four years she’s been in Scandinavia developing new control products for ABB. Her position with Siemens in Dubai is firmly centred on PROFIBUS and will allow her to focus her marketing skills on helping PI expand in the Middle East, a key area that deserves more support from the PI community. Her presence at the 23rd PI Meeting in Rome (see full report left) gave her the chance to meet current RPA Chairmen and to find out 'how they did it'. We’ll keep you informed of Paula’s progress.

Among the many presentations given on the PI booth was one about FDI technology. PI is actively working as part of the FDI Cooperation to help develop FDI, which will lead to a big reduction in the costs of maintaining plant assets. It enables both FDT- and EDDL-based host systems to manage field devices using a single engineering package, so it will make different engineering solutions for different devices obsolete

. It also provides a scalable alternative in applications ranging from simple configuration to the complex management of sophisticated field devices.

 


PROFINEWS is published by PI, a global community supporting technological excellence in industrial automation. It represents PROFIBUS, PROFINET and IO-Link and actively collaborates with other leading automation groups such as ECT, HART, FDI, FF, OPC and WCT.

www.profibus.com or www.profinet.com


IO-Link Technology Days are being organized by MSC Gleichmann Schweiz, HMT microelectronic and MESCO Engineering in September and December. An overview of the IO-Link Consortium will be presented along with hardware and software elements of IO-Link and the testing requirements for conformity.  Component manufacturers will present products for developing IO-Link devices.

PI North America personnel continue to criss-cross the USA and Canada in their unending mission to spread the PROFIBUS/PROFINET message via training classes, seminars and workshops. Carl Henning blogged of his recent Ontario experiences here, with his recommended path to a full PROFINET education process. The available learning resources are extensive, he says. They include on-line background programs as well as training classes and of course full support from PICCs and member companies.  The new PROFINET-dedicated web site All Things PROFINET is particularly user-friendly, he points out,

as it can be browsed freely or approached in a role-based, logical progression. PI North America

A class on the configuration and deployment of industrial wireless networks is being held at PICC MMU in November. Presented in conjunction with Daconi Wireless, the course shows how a PROFINET or PROFIsafe network can be securely and reliably deployed over an industrial wireless LAN. It also explains how to avoid common pitfalls. More information Registration. UK

JPO's Motoyoshi San in the new test labJapanese PROFIBUS Organization (JPO) moved to a new location in August, 2010. It's just a few minutes walk from the previous office and it has a test laboratory facility for DP-V0 and -V1 slaves plus a small seminar room. JPO has already held several PROFIBUS and PROFINET seminars in the new office and hopes it will help towards getting more new members as well as further promoting PROFIBUS / PROFINET. Pictured is JPO's Motoyoshi-san at the new test facility. The new office address is: Japanese PROFIBUS Organization, West World Building 4F, 3-1-6 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-0022 Japan.  <link community/regional-pi-associations/japan/ - external-link-new-window "Japan">JAPAN</link>

India PROFIBUS PROFINET AssociationThe Indian PROFIBUS, PROFINET Association (IPA) now has 18 active members and is poised for aggressive growth.  The list includes prominent end users such as Reliance Industries which is led by Mr B R Mehta. IPA participated in the Automation 2010 Fair in Mumbai in September with its own booth, where the PICC at UL Group showcased a multi-vendor PROFIBUS/PROFINET system. The fair gave a first opportunity for IPA to hold a conference to present PROFIBUS and PROFINET to India PROFIBUS PROFINET Associationparticipants. Prominent customers from the automotive industries, process, power, OEM and system integrators attended. IPA recognized the presence of UL Group's PROFIBUS partners, namely Lothar Schröttel and Stefan Ruebesam of Profichip, and Juergen Bischhaus and Staffan Dahlströmof HMS, who shared their views on PI technology and the market opportunities in India. The conference featured multiple sessions from prominent speakers and was attended by about 140 delegates. The second edition of the IPA newsletter was introduced by Mr B R Mehta of Reliance. The IPA conference won an award for the 'best technology presentation' and UL Group won a 'best stall' award. IPA plans to do more Road Shows and intends to participate in more exhibitions. INDIA

To support the rapid worldwide dissemination of its unique point-to-point connection solution for smart actuators and sensors, the IO-Link consortium has created a new infrastructure. Accordingly, IO-Link is now part of Technical Committee (TC6) within PI and is also represented on the Advisory Board.

 

Working Groups (WGs) in the areas of technology, marketing, network integration, and profiles make up the infrastructure for further technical development and efficient dissemination of IO-Link technology. A new Steering Committee (SC) has been formed, to include representatives of all IO-Link interest groups (master manufacturers, device manufacturers, system providers, service providers, and chip manufacturers).

 

Perhaps the biggest change is the elimination of the membership entrance fee of EUR 10,000. Membership in a Regional PI Association and acknowledgement of the IO-Link System of Rules now provides access to the specifications, participation in WGs, and use of the "IO-Link" logo.

IO-Link enables quick and easy expansion or simplification of PROFIBUS and PROFINET networks. An IO-Link expansion module attaches directly to the network as a node, allowing up to four intelligent sensors to be connected. This cuts costs by up to 40% claims Balluff because one expander and 4 discrete sensor hubs can replace 5 discrete PROFIBUS modules. Further, up to 76 sensors per node are possible.
BALLUFF

India ran a series of workshops in December for engineers from the cement and electronics industries. About 55 people attended. The event was a great success says Dileep from UL.

PI has abolished the certification fees for PROFINET products for PI member companies, now that the certification process has been fully developed. Certification nows covers the entire functionality of PROFINET, extending from IO devices with RT functionality and IRT functionality to IO controllers.

 

 



Terminales Portuarias S.L. (TEPSA) is an independent company in Spain that specializes in the reception, storage and forwarding of bulk liquid products such as chemicals, petroleum products and biofuels. It currently operates from four Spanish ports: Barcelona, Bilbao, Tarragona and Valencia.

Endress + Hauser TEPSA

During a recent refurbishment, TEPSA decided to replace a maximum level alarm system based on float switches with a SIL 2 compliant system. The new system had to be testable prior to each load and should use existing wiring. Endress+Hauser Spain acted as main automation contractor and were responsible for engineering, project management, commissioning, training, post-project process audit and 3rd party installation supervision.

350 tanks in hazardous areas have been equipped (across the four ports) with Liquiphant level switches connected to Nivotester switch amplifiers. Turk BL20 PROFIBUS RIOs are used for local alarming, connected to six SFC173 PROFIBUS Field Controllers via PROFIBUS DP. The Field Controllers themselves communicate with a P View SCADA system via an OPC server and Ethernet backbone. A central workstation with P View Client/Web Server monitoring is used to acquire and visualize incoming data.

The ControlCare system provides a complete tank monitoring solution with alarming and visualization. The alarms are indicated locally by P View web clients and annunciated remotely via a Motorola radio messaging system (recorded voice), also triggered by ControlCare. The P View Multimedia module, which sends SMSs, calls or e-mails, was used to configure individual voice messages for each level switch.

Endress + Hauser TEPSAFor TEPSA, the new system fulfills all technical requirements. In Endress+Hauser they have a solution provider who has taken responsibility for all phases of the project and who provides expertise and maintenance when the tank farm is operating. The system is open and easily expandable too, e.g. to a full level monitoring or inventory management system. ENDRESS + HAUSER

Certification

PI has decided to abolish certification fees for PROFINET devices developed by member companies.

 

Another Story

This is another news brief telling you what happens in PI

Comtrol has added TCP/IP to PROFINET IO connectivity to the Devicemaster UP line of Industrial Ethernet gateways. The device provides connectivity to both serial and Ethernet TCP/IP raw/ASCII devices and provides detailed diagnostics. It configures in minutes. Supported PLCS include ET-400, S7-400 and S7-300, the Omron CJ Series, and Bosch Rexroth IndraControl types. COMTROL

The latest Subcon-Plus-Profibus/90° family of connectors offers the option of insulation displacement technology, allowing PROFIBUS cables to be used with solid or flexible copper conductors and reducing assembly times significantly. The high-grade shielded connector housing permits excellent interference immunity even at maximum transmission rates.
PHOENIX CONTACT

The AnyBus X-gateway is a configurable stand-alone module that allows plant-floor PROFIBUS devices to communicate with a Modbus-TCP network and vice versa. Typical applications are installations with mixed usage of Siemens and Schneider Electric, ABB or GE PLCs. The X-gateway is DIN rail mounted and functions as a server (slave) on the Modbus-TCP network and as a master on the PROFIBUS side. HMS INDUSTRIAL NETWORKS

The latest version of the PROFItrace troubleshooting & maintenance tool contains an OPC server, offering a standardized way to get data into other applications. Procentec says "the opportunities are vast!" For example, ProfiTrace tags can be displayed in a SCADA/HMI package, or linked to an SMS/email client; reports can be generated in Word/Excel.
PROCENTEC

A new set of free Windows7 drivers is available for Softing PROFIBUS PC interface boards, including PCI Express, PCI, PC/104plus and USB types. These drivers support 32 and 64 bit versions of Windows7, Vista and XP. This allows 32 bit applications to run on 32 bit and 64 bit operating systems and native 64 bit programs to be built.
SOFTING

Version 3.1 of ProfinetCommander, the PROFINET development and test tool that makes it easy to build a PROFINET network without PLC programming skills, now includes the option to display I/O data in hex, binary, or decimal, GSDML file parsing support for UNIX or Windows and added decoding of PROFINET port data change notification alarms. PIC

A new ERTEC200-based PNIO Starter Kit is available, offering an easy way to add PROFINET to automation devices. It includes all the hardware, software and debugging tools needed to setup a PROFINET IO device prototype, including an Evaluation Board, ERTEC200 samples, the PNIO Stack and real time examples in source code. SIEMENS

RJ45 easy to connect from Phoenix ContactNew RJ45 plug connectors with Quickon fast connection technology for PROFINET allow four AWG22 wires to be quickly and reliably connected. The PNO Guideline specifies AWG22 wires for configuring PROFINET topologies. Assembly requires no tools - wires are simply inserted into the flap, cut off, and then contacted by pressing down the flap. Connectors come pre-assembled so no small parts can get lost. PHOENIX CONTACT

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin massa nunc, egestas in pharetra semper, ullamcorper non nisi. Nulla condimentum lacus id ligula pretium blandit. Sed erat velit, ultrices id adipiscing eget, pretium vel nibh. Praesent at ante at mi posuere sodales in vitae velit. Nam nunc tortor, condimentum ac eleifend ac, scelerisque vitae massa. Maecenas vel dolor nec lectus aliquam elementum. Suspendisse potenti. Quisque tempor ligula sed augue rhoncus ut malesuada massa fringilla. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nunc luctus commodo magna in volutpat.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Proin massa nunc, egestas in pharetra semper, ullamcorper non nisi. Nulla condimentum lacus id ligula pretium blandit. Sed erat velit, ultrices id adipiscing eget, pretium vel nibh. Praesent at ante at mi posuere sodales in vitae velit. Nam nunc tortor, condimentum ac eleifend ac, scelerisque vitae massa. Maecenas vel dolor nec lectus aliquam elementum. Suspendisse potenti. Quisque tempor ligula sed augue rhoncus ut malesuada massa fringilla. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nunc luctus commodo magna in volutpat.

in devices such as compact IOs.“

PROFIenergy takes off: Phoenix Contact has also become one of the first companies to introduce PROFIenergy devices (see product story right). The goal, said Bibelhausen, is to make the company's entire PROFINET portfolio available in PROFIenergy-compliant versions.

 

Siemens has also introduced a PROFIenergy-enabled ET200S (right). Ruttkamp said: "For I/O, there will be downloadable PROFIenergy modules, as with our PC-based solutions. PROFIenergy technology is an important part of our “green” portfolio which underlines our contribution to sustainable environmental protection and energy savings.”

As the Chinese "Year of the Tiger" was being celebrated in February, Phoenix Contact formally announced its new PROFINET chip - the TPS-1. Known as 'TIGER' it is a highly integrated single-chip ASIC for easy implementation in low end compact devices and drives. The chip supports existing PROFINET RT and IRT specifications.

 

Volker Bibelhausen, Director of the Automation Business Unit of Phoenix Contact Electronics said: "With the TIGER chip, even small and simple field devices can be connected to PROFINET cost-effectively."

 

Siemens collaborated with Phoenix Contact in the development of TIGER and Uwe Ruttkamp, Director Product and System Management SIMATIC, confirmed that: "We plan to use TPS-1

Visit Nuremberg in November to see PI.Once again PI is exhibiting at Europe's premier automation event. The large booth will feature all aspects of PI technologies, supported by member companies including device manufacturers, end-users, OEMs, engineers, plant manufacturers, universities, and of course PI’s own Competence Centers, Training Centers, Test Labs and RPAs. Highlights include technical presentations and demonstrations of PROFIBUS, PROFINET, IO-LINK, PROFIsafe, PROFIenergy, DRIVES, and many new products plus daily forums on PROFINET, PROFIenergy, IO-Link, PROFIBUS PA, PROFIsafe, Drives and Interbus. There will also be guided tours of the main features of the booth. More information: http://www.profibus.com/sps-ipc-drives

A comprehensive offer of products and services is now available from a wide range of providers to aid with the design and development of PROFINET devices. As well as sophisticated SDKs, firmware based on Standard Ethernet interface, PROFINET ASICs, and ready-to-install modules can now be easily purchased to support fast and effective deployment of PROFINET devices. A brochure entitled “The Easy Way to PROFINET Technology" has been published and is now available for download HERE. This includes a full overview of all providers. With the release of the new TPS1 (TIGER ASIC) by Phoenix Contact, yet another PROFINET chip is now available to assist device implementers. TIGER has been designed especially for compact devices (e.g. compact IO modules or drives). 

EtherCAT and Powerlink, which focus mainly on drive technology, were estimated to have market shares of 4% and 11% respectively (see graphic).

IMS Research forecasts PROFINET to grow the most between 2008 and 2013, with +8.7% (CAGR). It predicts EtherNet/IP will grow more slowly (by +7.1%) and Modbus TCP/IP will decline (by about -0.4%). IMS RESEARCH

In a new market study called “The World Market for Industrial Ethernet – 2009 Edition”, IMS Research in UK estimates that with a market share of 28% PROFINET is amongst the top most-used Industrial Ethernets worldwide. The study particularly notes that PROFINET offers an Industrial Ethernet solution for a comprehensive range of applications, including high-speed motion control. PROFINET, EtherNet/IP and Modbus TCP/IP fill the top slots, accounting for 80% of the total market.http://www.imsresearch.com/index.php

Welcome to another packed issue of PROFINEWS! With 2010 nearly over it is timely to look at the progress being made by PROFIBUS and PROFINET. We learned  earlier this year that in 2009 both technologies withstood the ravages of the economic downturn well, and I believe that 2010 will show outstanding progress. We will have to wait for the official figures for confirmation but what I am sure of is that PROFIBUS and PROFINET are helping manufacturers everywhere become more competitive and more productive, and thereby they are contributing a lot to the collective effort to climb out of recession. For 2011 I can tell you that PI is looking to expand its horizons to further boost PROFINET in particular. We will be attending several fairs that thus far have remained outside our main area of interest. The best example I can mention is 'Embedded World' in Nuremberg in March, which our technology supporters in particular are keen to attend. The aim there will be to show the extensive range of chip, board and other resources that are available to help device vendors integrate PROFINET into products and systems. We will also demonstrate how IO-Link is an ideal partner for PROFINET in this scenario. But that does not mean we are ignoring our mainstream fairs. We will be at SPS/IPC/Drives as usual in November in Nuremberg to promote our full technology solutions range at Europe's most prestigious automation event. I will be there too and I'll be pleased to welcome you in person on the booth (below). See you in Nuremberg?

Jörg Freitag, PI Chairman

Prosoft CompactLogix interfaceThe PROFIBUS DP-V1 master communication module for the CompactLogix platform is now equipped with CIPconnect, enabling remote configuration and diagnostics of the MVI69-PDPMV1 module via EtherNet/IP. CIPconnect also enables asset management software that supports FDT/DTM to connect to PROFIBUS DP devices over EtherNet/IP. PROSOFT

The new

GHS 12G/8

Gigabit Modular Switch from Phoenix Contact allows 12 Gigabit ports to be installed on a mounting rail. It is therefore especially suitable for use in a powerful automation backbone and for connecting to the higher-level IT network. It supports all commonly used Gigabit and Fast Ethernet data transfer standards, standard IT protocols as well as PROFINET.

 

The modular concept allows expansion to 28 ports. Twisted pair and fiber options are available.

The switch includes diagnostic and configuration functions Important parameters can be read and set at the device using an operator console. S

upport for the energy management of automation systems via the PROFIenergy profile is incorporated

.

 

The new

GHS 12G/8

Gigabit Modular Switch from Phoenix Contact allows 12 Gigabit ports to be installed on a mounting rail. It is therefore especially suitable for use in a powerful automation backbone and for connecting to the higher-level IT network. It supports all commonly used Gigabit and Fast Ethernet data transfer standards, standard IT protocols as well as PROFINET.

 

The modular concept allows expansion to 28 ports. Twisted pair and fiber options are available.

The switch includes diagnostic and configuration functions Important parameters can be read and set at the device using an operator console. S

upport for the energy management of automation systems via the PROFIenergy profile is incorporated

.

 

Of those 31.4 million PROFIBUS devices, 5.4 million are now used in process automation so it's clear that PROFIBUS has assumed the dominant fieldbus role. The latest PA Profile V3.02 is expected to accelerate this since it contains a set of important asset management features specifically requested by end users.

 

In the Functional Safety market, PROFIsafe continues to lead as well. The 220,000 purchased PROFIsafe devices in 2009 equals the number purchased the previous year. The installed base of PROFIsafe now exceeds 850,000 devices.

 

NB: PROFINET market statistics are collected by an independent and fully neutral third party. Only end devices are included in the count; infrastructure devices are excluded.

 

Paula to set up Dubai office

Attempts to establish Regional PI Association (RPA) in the key Middle East area have not so far proved fruitful but that’s all about to change. Paula Doyle has recently joined Siemens in Dubai and is planning to set up a formal RPA there shortly. Paula is from Limerick in Ireland, where she gained a PhD. For the past four years she’s been in Scandinavia developing new control products for ABB. Her move to Dubai means she can now focus her marketing skills on helping PI expand in the Middle East. She told PROFINEWS that legal requirements in Dubai mean that some kind of PI Competence Centre (PICC) will have to be established first. Her attendance at the 23rd PI Meeting gave her the chance to meet many of the other RPA Chairmen and to see how they did it. We’ll keep you informed of Paula’s progress.

PI and its members were strongly represented at the recent Hannover Fair in April, with a new booth design reflecting the latest corporate design standards. Multi-vendor demonstrations, a host of new products and many educational seminars gave visitors a full insight into PI activities. Major topics included PROFINET, PROFIsafe, PROFIdrive, and of course the new PROFIenergy profile which promises to cut energy consumption dramatically.

 

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

PROFIenergy

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

PROFIenergy takes off

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

FDI workshop

At the Hannover Fair on April 20, 2010, experts discussed the latest development of FDI technology. The primary benefit of FDI is that end users with either an FDT- or an EDDL-based host will have a single source solution for managing field devices. Users will no longer need to manage disparate device descriptions, which will reduce the costs associated with maintaining assets in the field.

The FDI project will also provide a very scalable solution that users can deploy in applications ranging from simple configuration to complex management of the most sophisticated field device. This makes different solutions for different devices obsolete. An example of this is that FDI device packages for applications such as valve diagnostics will provide the same functionality regardless of the host system.

The discussion was moderated by Dr. Thomas Tauchnitz, Sanofi Aventis. Participants were Kimikazu Takahashi (Yokogawa), Hartmut Wallraff (Invensys), Daniel Huber (ABB), Hans-Georg Kumpfmüller (Siemens) and Dr. Raimund Sommer (Endress+Hauser).

Welcome to our new PROFINEWS newsletter

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

PROFIenergy takes off

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

PROFIenergy starts to climb

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

6666666666666666Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

Automation users try when they can to minimize energy consumption, responding to pressures to cut costs and comply with increasingly stringent ‘green’ obligations.

Methods range from switching off equipment manually to installing semi-automated shut-down systems. Both are usually crude, expensive and hard to manage. To maximize energy savings a single, standardized, approach supported by vendors and users industry-wide is required – hence the PROFIenergy Profile.

The idea for PROFIenergy came from AIDA, the Association of German Automotive Manufacturers, who asked PI to develop a way of intelligently managing the energy consumed by power-hungry equipment such as robot cells. If these Energy Consuming Units (ECUs) could be switched on and off in an open, consistent and managed way, they argued, substantial cost savings could be achieved.

The PROFIenergy Profile enables control devices (e.g. PLCs) to send signals such as Begin Pause and End Pause over PROFINET to each ECU, in accordance with production circumstances such as lunch breaks, holidays, random line stoppages and even maximum load conditions. On receipt of the PROFIenergy commands, software ‘agents’ in the ECU firmware initiate ‘sleep’ modes that are pre-defined by the equipment vendor.

PROFIenergy can operate either alongside existing automation processes on a single controller platform, or a separate, dedicated, energy management controller can be used. PROFIenergy is applicable to single devices such as actuators and remote IO, as well as sub-systems such as robot cells and paint lines.

PROFIenergy is thus an ‘enabling technology’ that allows intelligent energy management strategies to be deployed over existing PROFINET networks. Vendors support PROFIenergy by implementing the required functions in their devices or sub-systems, thereby making PROFIenergy available ‘on tap’. Actual energy savings depend on how end users choose to adapt PROFIenergy to their automation networks.

Early estimates by one automotive manufacturer suggest that savings of up to €60,000 per annum could be achieved for a robot cell through the use of PROFIenergy.

PROFIBUS is a standardized, open, digital communications system for all areas of application in manufacturing and process automation.

PROFINET is the innovative open standard for Industrial Ethernet. It satisfies all requirements of automation technology.

MTP Module Type Package enables modular production in which individual components can be flexibly combined.

IO-LINK is an independent sensor / actuator interface solution for use with all automation technologies.

omlox is an open technology standard for real-time indoor localization systems for industrial manufacturing.