Overview and Applications of PROFINET

Andy Verwer
Automation Systems Centre
Manchester Metropolitan University
Outline of Presentation

- What exactly is PROFINET?
- Scope of PROFINET.
- PROFINET I/O.
- Real-time performance.
- Integration with fieldbus.
- Component Based Automation.
- Safety and Security.
- Industry acceptance and applications.
- Practical Demonstration of PROFINET IO
What exactly is PROFINET?

- PROFINET is an open Industrial Ethernet standard developed by the PROFINET Organisation.
- PROFINET
 - is completely standard Ethernet (IEEE802.3).
 - operates at 100Mbit/s over twisted-pair copper or fibre-optic cables,
 - exclusively uses switches and full duplex operation to completely eliminate collisions,
 - makes use of TCP/IP, XML and other IT standards.
 - is “real-time” and deterministic,
- PROFINET is well thought out to incorporate all the requirements of automation and control systems.
PROFINET Scope

- Network Engineering and Maintenance
- Component Based Automation
- Decentralized Periphery
- Integration with Fieldbus
- Deterministic real-time operation
- WEB integration
- Safety and Security
- Asset Management
- Manufacture materials handling storage
- Motion Control
- Process Control
PROFINET IO

- PROFINET IO provides decentralised peripherals using Ethernet connection and the PROFINET communication protocol.
- PROFINET IO uses Real-Time and Non Real-Time communications.
- PROFINET makes use of relevant TCP/IP protocols for setup, configuration and maintenance:
 - DHCP - Dynamic Host Configuration Protocol,
 - DNS - Domain Name Service,
 - SNMP - Simple Network Management Protocol,
 - ARP - Address Resolution Protocol,
 - ICMP - Internet Control Message Protocol, etc
PROFINET stack (OSI model):

1 - Physical layer
2 - Data Link Layer
3 - Network Layer
4 - Transport Layer
5 - Session Layer
6 - Presentation Layer
7 - Application Layer

Network

Non time-critical communication

Real-time communication

Standard Fast Ethernet

IEEE802.3

TCP/UDP

PROFINET Real-time channel

PROFINET Application Layer
PROFINET IO

• The Standard TCP/IP channel is used for non-time critical tasks.
 - Downloading of configuration, parameters,
 - Diagnostics,
 - Device management information, etc.
• The Real-Time channel is used for time-critical data:
 - Cyclic process data,
 - Alarms and critical messages,
 - Communication monitoring.
• The PROFINET application layer protocol is defined in the International Fieldbus standard IEC61158 (type 10).
PROFINET IO devices

IO-Controller
E.g. PLC running application program
- Configuration
- Control/monitoring
- Alarms

PROFINET Supervisor
E.g. PC or laptop running engineering tool application
- Diagnosis
- Status/Control
- Parameters

Ethernet

IO-Device
E.g. Field device with inputs/outputs
• The PROFINET IO device model is similar to that used in PROFIBUS.
• Based on a slots with plug-in modules.
• Each slot can have sub slots.
PROFINET IO

• Many features that have been developed for PROFIBUS devices have been directly incorporated into PROFINET:
 - Standardised module and channel-related diagnostics,
 - Alarm and status information,
 - Identification and Maintenance (I&M) functions,
 - Time stamping,
 - Highly deterministic process cycle timing,
 - Device description file (GSD) with configuration data for the device and available modules - PROFINET uses XML.
PROFINET Scope

- Network Engineering and Maintenance
- Component Based Automation
- Decentralized Periphery
- Wireless
- Integration with Fieldbus
- Deterministic real-time operation
- WEB integration
- Safety and Security
- Asset Management
- Manufacture materials handling storage
- Motion Control
- Process Control
- Manufacture
- Materials handing
- Storage
- Motion
- Control
- Process
- Control

PROFINET Overview, Andy Verwer, MTEC 14th February 2007
Real-Time Operation

• What does “Real-Time” mean?
 - A real-time control system responds in a deterministic manner within a time which is short compared to the plant response time.
 - i.e. it depends on the application!

• Standard communications
 - requires a response in the order of ~100ms.

• Factory automation
 - requires a response time in the order of ~10ms.

• Motion control
 - requires a response time in the order of ~1ms with a jitter <1µs.
Real-Time Operation

• PROFINET makes use of:
 - TCP/IP for standard communications, achieving response times < 100ms.
 - A Real-Time, RT, channel for I/O communications, achieving cycle times < 10ms with <1ms jitter.
 - Isochronous Real-Time, IRT, channel for highly deterministic performance (drives and servos), achieving cycle times < 1ms with <1µs jitter.
 - IRT uses communications based on IEEE802.1Q VLAN technology.

• RT and IRT communications are totally compatible with TCP/IP.
Real-Time Operation

• PRIFINET IRT complies with IEEE 1588 - “Precision clock synchronization protocol for networked measurement and control systems”.

• However this not always good enough!

• PROFINET extensions to IEEE 1588 provide better accuracy with:
 - Automatic determination and compensation of the network transmission time.
 - Less than 1µs jitter.
Isochronous Real-Time Operation

Cycle 1
- IRT channel
- Non real-time channel
- IRT channel
- Non real-time channel
- IRT channel
- Non real-time channel

Cycle 2
- Sync
- IRT
- RT
- NRT
- Open channel i.e. TCP/IP

Cycle 3

Less than 1ms possible
Isochronous Real-Time Performance

IRT traffic

<1µs jitter

15% jitter

TCP/IP traffic

100% jitter

0 1ms 10ms 100ms Cycle time
PROFINET Scope

- Network Engineering and Maintenance
- Component Based Automation
- Decentralized Periphery
- Wireless
- Integration with Fieldbus
- Deterministic real-time operation
- Safety and Security
- WEB integration
- Asset Management
- Manufacture materials handing storage
- Motion Control
- Process Control
- Manufacture
- Manufacture
- Manufacture
- Manufacture
- Manufacture
- Manufacture
Integration with Fieldbus

- Approaching 20 million PROFIBUS devices are currently installed worldwide.
- This investment is protected with PROFINET for both manufacturers and end-users.
- PROFINET provides a transparent interface with PROFIBUS via a “Proxy”.
- The Proxy is a PROFINET IO device on one side and a PROFIBUS master on the other.
- PROFIBUS Configuration is integrated into the PROFINET configurator and is downloaded via Ethernet.
Integration with Fieldbus

PROFINET

PROXY

PROFIBUS DP

PROXY

PROFIBUS PA

INTERBUS-S

Other fieldbusses?
PROFINET Overview, Andy Verwer, MTEC 14th February 2007

PROFINET Scope

- Network Engineering and Maintenance
- Component Based Automation
- Decentralized Periphery
- Wireless
- Integration with Fieldbus
- Deterministic real-time operation
- Safety and Security
- WEB integration
- Asset Management
- Manufacture materials handing storage
- Motion Control
- Process Control
- Motion Control
- Asset Management
- WEB integration
- Deterministic real-time operation
- Integration with Fieldbus
- Wireless
- Component Based Automation
- Decentralized Periphery
- Network Engineering and Maintenance
Component Based Automation

• Component Based Automation is a modular architecture for distributed control.
• Based upon an “object oriented approach” to distributed automation.
• Component Based Automation provides a scalable architecture for dealing with complex distributed control systems.
Component Based Automation

- Consider a manufacturing application consisting of a number of machines from different vendors.
- Each will incorporate a local control system to automate the machine.
- These intelligent machines must communicate in order schedule and control production.
Component Based Automation

- The OEM develops the application software for their device.
- And creates an “application specific” component
- With an agreed standardised interface.
Component Based Automation

- Components can be exercised and tested by the machine vendor separately from the final application.
- Software components are then “wired” together to build the plant control system:
Component Based Automation

1. Create components:
 - Vendor A
 - Vendor B
 - Vendor C
 - Project program

2. Import components into library:
 - Fill
 - Close
 - Pack

3. Link components:
 - A1
 - A2
 - B
 - C

Bottom up development:

PROFINET Overview, Andy Verwer, MTEC 14th February 2007
Component Based Automation

- The component software connection is independent of the communication connections:
PROFINET Scope

- Network Engineering and Maintenance
- Component Based Automation
- Decentralized Periphery
- Wireless
- Integration with Fieldbus
- Deterministic real-time operation
- Safety and Security
- WEB integration
- Asset Management
- Manufacture materials handing storage
- Motion Control
- Process Control
- Manufacture materials handing storage
- Motion Control
- Process Control
Functional Safety with PROFINET

- PROFINET also offers safety oriented communication that allows for integrating safety oriented components.
- A second 'safety fieldbus' is not necessary.
- PROFIsafe V2 is certified according to EN954 cat 4 or IEC61158 SIL3.
• PROFIsafe V2 provides functional safety for both PROFIBUS and PROFINET systems.
• Suitable for use in SIL3 applications.
PROFINET Security

- Objectives of PROFINET Security
 - Fault-free operation and protection of industrial systems and production process
 - Protection against unauthorized access
 - Extended use of existing, open and field-tested IT security standards
- Protection for "automation cells" using security network components.
 - Real-time communication unaffected within the cell
 - Lower-level PROFIBUS/fieldbus links are also protected.
PROFINET Security

- PROFINET security modules provide cell protection against deliberate or accidental malicious access by employees or outsiders.
Industrial Acceptance and Applications

- The success of PROFIBUS as the number one fieldbus has come about mainly because it supports a wide range of applications and industries:
 - Solutions exist for:
 - Low cost distributed I/O,
 - Power supply over bus (two-wire connection),
 - Intrinsic Safety (explosion prevention),
 - High-Speed, highly deterministic control (motion control),
 - Redundancy (high availability systems),
 - Functional Safety (accident prevention),
 - Asset Management etc.
 - Approaching 3000 products from over 300 different vendors.
- The consequence is that approaching 20 million PROFIBUS devices have been installed.
PROFINET builds on the success of PROFIBUS and ensures a future for both.

PROFINET has been in development for over 6 years.

Over 100 PROFINET products are currently available from about 25 different companies.

Hundreds of applications have been reported from a wide range of industries and using a wide range of technologies including safety, wireless, CBA, motion control.
In 2004, AIDA, a consortium of the big four European automotive manufactures announced adoption of PROFINET as the industry standard.

The main reasons for this decision are reported to be:
- The integration of safety-related information,
- The simple integration of existing PROFIBUS and Interbus systems.
PROFINET Practical Demonstration
PROFINET Configuration

• PROFINET system configuration is based on similar concepts to PROFIBUS.
• Each device has a GSD file which describes its characteristics and capabilities.
• PROFINET GSD files are written in XML (eXtensible Mark-up Language) – often called GSDML files.
• GSDML Files contain information on:
 - Device identification,
 - Available modules,
 - Parameters and settings,
 - Diagnostic information
 - Different languages are supported within one file.
Configuration

- Configuration of a PROFINET IO system follows similar procedures to PROFIBUS; i.e.
 - Install GSDML file into catalogue of configuration tool,
 - Select device and place on bus,
 - Allocate the IP address,
 - Add modules,
 - Set device and module parameters.
- However many configuration tools also provide on-line functionality to:
 - Download configuration data to devices,
 - Set IP addresses and device names,
 - Test connectivity and provide device diagnostics.
Demonstration

- We will configure two PROFINET IO devices to be controlled by a simple IO Controller running on a laptop.
The Automation Systems Centre

• The Automation Systems Centre at Manchester Metropolitan University is the UK’s PROFIBUS International Competence Centre.

• We provide training and support for PROFIBUS, Industrial Ethernet (including PROFINET), Actuator-Sensor Interface (AS-i) and Open PLC programming (IEC61131-3)
Contact Information

- Further information can be obtained from:
 http://www.profibus.com
 http://www.profibus.co.uk
 http://www.mmu.ac.uk/ascent

- Email:
 A.Verwer@mmu.ac.uk
 uk@profibus.com